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Abstract
The quantum steganalysis faces more challenges than classical steganalysis owing to
the support of quantum mechanical principles such as Heisenberg uncertainty prin-
ciple and non-cloning theorem. In this paper, a novel quantum steganalysis protocol
based on pure state is proposed, which adheres to the fundamental fact that classical
steganography tends to change the probability distribution of the carrier, and the phys-
ical properties that the unknown quantum state discrimination process is sensitive to
the distribution in quantum state discrimination. After utilizing accurate calculation
on the geometric coherence and 1/2-affinity coherence to obtain the probability that
the transmitted quantum states can be correctly discriminated, effective detection on
covert communication can be achieved by comparing the detected distribution with
theoretical distribution. Meanwhile, steganographic detection rate and false alarm
rate are introduced as two significant performance evaluation parameters of quan-
tum steganalysis. In this paper, the quantum steganalysis and performance evaluation
targeting the BB84-based quantum steganography proposed by Martin are given in
detail. The geometric coherence and 1/2-affinity coherence change substantially when
the steganographic embedding rate is above 0.2, and a high steganographic detection
rate and a low false alarm rate can be obtained according to the proposed protocol.
Besides, the impact on QKD efficiency can be controlled by adjusting the detection
rate or adopting sampling detection strategy. It proves that the proposed protocol has
a satisfactory quantum steganalysis performance.

Keywords Quantum steganalysis · Quantum coherence · Quantum state
discrimination · Quantum covert communication

1 Introduction

As one of the significant research fields of information security, classical steganogra-
phy aims at protecting information transmission. It can realize covert communication
by establishing a hidden channel in the open channel without causing suspicion.As
an extension of classical steganography in the quantum field, quantum steganography
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has developed for decades by integrating the fundamental idea of classical steganog-
raphy into quantum secure communications. Compared with classical steganography,
quantum steganography has more natural advantages and broader prospects in terms
of imperceptibility, capacity and security due to various particular physical proper-
ties of quantum, such as Heisenberg uncertainty principle and quantum non-cloning
principle, etc.

Quantum steganography has developed rapidly in the last decade. In general, it can
be divided into the following three categories: quantum data hiding, quantum covert
communication and quantummultimedia steganography. Firstly, quantum data hiding
(QDH) mainly employs quantum mechanical properties to hide secret messages. Ter-
hal et al. [1] proposed the first QDH protocol based on the property that

∣
∣�−〉

is a spin
singlet unique to four Bell states. Guo and Guo [2] analyzed the implementation of
QDH with Bell states using an optical frequency converter and simplified the coding
process. Eggeling and Werner [3] realized data hiding in multi-particle non-entangled
quantum states. Matthews et al. [4] investigated how to distinguish quantum states
with limited measurements, which is of great use to QDH. Various quantum steganog-
raphy schemes [5–9] were proposed recently utilizing particular quantum states, such
as GHZ states, Brown states. Quantum covert communication (QCC) is a vital branch
of quantum steganography. It realizes covert communication based on quantum secure
communication. Gea-Banacloche [10] implemented the covert transmission based on
quantumerror-correcting codes (QECC).Martin [11] put forward novel steganography
based on BB84 protocol [12], which could hide a secret bit in the eavesdropping detec-
tion particles. The protocol is widely used because it is easy to implement physically
by only using single-particle state. Liao et al. [13] designed a steganography proto-
col based on quantum secret sharing (QSS). Several quantum steganography schemes
[14–16] were proposed based on the quantum secure direct communication protocol
(QSDC). Mihara [17,18] and Qu et al. [19] designed quantum steganography based on
entanglement and QECC. The third category is quantum multimedia steganography
(QMS), which is of high steganographic capacity. It realizes covert communication
by embedding secret messages into quantummultimedia, such as quantum text, quan-
tum image, quantum audio [20], quantum video. It is a promising branch and has been
developing rapidly in recent years. Mogo [21,22] expanded the application of classical
information hiding to the quantum field by using three-dimensional qubits to represent
image pixel values. Jiang and Wang [23] proposed a quantum image steganography
protocol based onMoire pattern. Enhanced quantum representation (NEQR) and least
significant bit (LSB) are widely used in QMS [20,24–29].

On the contrary, steganalysis targets to prevent covert communication by detecting
the existence of hidden channel in open channel. It is easy to know that the relation-
ship between steganalysis and steganography is similar to that of spear and shield.
Meanwhile, steganography and steganalysis also will complement each other. In other
words, steganalysis plays a crucial role in promoting the development of steganog-
raphy, while the progress of steganography reversely provides new challenges and
opportunities for the development of steganalysis.

The flourishing of quantum steganography in the last decade further increases the
urgency and importance of the research on quantum steganalysis for the effective
detection of covert communication. However, there exist more challenges to over-
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come for quantum steganalysis due to quantum properties, such as the Heisenberg
uncertainty principle and quantum non-cloning principle. The relevant development
is still in the embryonic stage. There are only a few quantum steganalysis schemes
targeting QMS, which attempt to detect secret messages in the carrier utilizing feature
extraction techniques and machine learning algorithms. Luo et al. [30] came up with
a quantum steganalysis scheme for LSB-based quantum image steganography and
designed a series of simple quantum circuits to accomplish the steganalysis proce-
dure. Chaharlang et al. [31,32] proposed two quantum audio steganography protocols
based on the least significant fractional qubit and performed corresponding quantum
steganalysis utilizing quantum K -nearest neighbor algorithm and quantum circuits
network.

Nevertheless, the research on quantum steganalysis of other two types of quan-
tum steganography (QDH and QCC) is still close to blank at present. In particular,
QCC protocols based on quantum secure communication protocols have a promising
application prospect, since quantum secure communication protocols are the basis of
future quantum communication networks. Therefore, it is of great practical signifi-
cance and theoretical value to develop quantum steganalysis targeting QCC. Under
these circumstances, a novel coherence-based quantum steganalysis protocol based on
pure state is presented in this paper, which adheres to the essential fact that classical
steganography tends to change the probability distribution of the carrier and the phys-
ical characteristics that the unknown quantum state discrimination process is sensitive
to the distribution in quantum state discrimination. In the new protocol, by accu-
rate calculation on the geometric coherence and 1/2-affinity coherence to obtain the
probability that the transmitted quantum states can be correctly discriminated, effec-
tive detection on covert communication can be achieved by analyzing the difference
between the detected distribution and the theoretical distribution.

The remainder of this paper is organized as follows. A brief introduction to basic
definitions and related formulas used in this paper is given in Sect. 2. Section 3 presents
the overall flow chart and specific execution steps of the new protocol. In Sect. 4, the
quantum steganography protocol [11] proposed by Martin is utilized to illustrate the
process of quantum steganalysis concretely. The performance analysis of the pro-
posed quantum steganalysis protocol is given in Sect. 5. This paper is ended up with
discussions and conclusions in Sect. 6.

2 Preliminaries

2.1 Fidelity and affinity

Distance in quantum state space is fundamental for quantifying correlation. Inner
product |〈ψ |ϕ〉| can be used describe the distance between two pure quantum states
|ψ〉 and |ϕ〉. For general quantum states ρ and σ , their fidelity and affinity can also be
used as the measurements on their distance [33,34].
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Fidelity is defined by Eq. (1).

F (ρ, σ ) = tr
(√

ρ1/2σρ1/2
)

(1)

Affinity is defined by Eq. (2).

A (ρ, σ ) = tr
(√

ρ
√

σ
)

(2)

As a generalization of affinity, α-affinity is defined by Eq. (3).

A(α) (ρ, σ ) = tr
(

ρασ 1−α
)

(3)

Here, α ∈ (0, 1).
Fidelity and affinity are the generalizations of classical distance, in a certain sense.

They both represent the degree of proximity between two arbitrary quantum states in
the Hilbert space.

2.2 Coherent and incoherent quantum states

Coherence is one of the fundamental characteristics of a quantum system, which
reflects the wave properties. As a precious quantum resource, coherence has been
widely studied in many fields.

Given an orthonormal basis {|i〉 , i = 1, 2, . . . , d} on a d-dimensional Hilbert space
H, the incoherent state can be represented by a density matrix with diagonal form.
The collection of incoherent states is given as

I =
{

σ |σ =
d

∑

i=1

λi |i〉 〈i | , λi > 0,
∑

i

λi = 1

}

(4)

On the contrary, the quantum state that cannot be denoted as such diagonal matrix
form is defined as the coherent state.

2.3 Several kinds of coherence

Baumgratz et al. [35] proposed a rigorous framework of resource theory to study
coherence based on the idea of quantifying entanglement, and they listed four prop-
erties (faithful, monotonicity, strong monotonicity, and convexity) that the coherence
measures should satisfy. Several kinds of coherence have been proposed on this frame-
work.

Geometric coherence [36] is defined by Eq. (5).

Cg (ρ) = 1 − max
σ∈I

F2 (ρ, σ ) (5)

Here, I is the set of incoherence states.
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Affinity coherence [37] is defined by Eq. (6).

C̃a (ρ) = 1 − max
σ∈I

A (ρ, σ ) (6)

Here, I is the set of incoherence states.
α-affinity coherence is defined by Eq. (7).

C (α)
a (ρ) = 1 − max

σ∈I

[

tr
(

ρασ 1−α
)]1/α

(7)

Here, I is the set of incoherence states.
The authors in [38] deduced the upper and lower bounds of geometric coherence

according to the super-fidelity and sub-fidelity, denoted by Eq. (8).

C̃a (ρ) < Cg (ρ) < min {l1, l2} (8)

Here, C̃a (ρ) = 1 − √∑

i 〈i | √ρ |i〉, l1 = 1 − maxi {ρi i } , l2 = 1 − ∑

i b
2
i i and√

ρ = ∑

i, j bi j |i〉 〈 j |.
By polar decomposition, it can be driven that

√

ρ1/2σρ1/2 = √
ρ
√

σU ; therefore,
it can also be easily proved by definition that 1/2-affinity coherence is an upper bound
for geometric coherence.

Cg (ρ) ≤ C1/2
a (ρ) (9)

For an arbitrary incoherence state σ that can be described as σ = ∑d
i=1 λi |i〉 〈i |,

the analytic expression of α-affinity coherence of ρ [37] is given by Eq. (10).

C (α)
a (ρ) = 1 −

∑

i

〈i | ρα |i〉1/α (10)

Geometric coherence and α-affinity coherence satisfy the properties of coherence
measures proposed by Baumgratz. The affinity coherence does not meet the strong
monotonicity, and it is a kind of convex weak coherence.

2.4 Quantum state discrimination

2.4.1 Unknown quantum state discrimination

Let us assume that the public channel considered by Charlie is {ρi , ηi }di=1. In other
words, Charlie believes that Alice takes the probability of ηi to send the quantum state
ρi . Charlie performs a measurement operation to discriminate the quantum states that
Alice sends. In general, Charlie can choose to use positive operator-valued measure
(POVM), and POVM is a set of semi-positive definite operators Mi that satisfy the
completeness.
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The probability that Charlie receives ρ j and determines it is ρi and can be denoted
as p (i | j) = tr

(

Miρ j
)

. Hence, the maximum probability that Charlie can correctly
discriminate all quantum states is given by Eq. (11).

Popt
S

(

{ρi , ηi }di=1

)

= max
Mi

∑

i

ηi tr (Miρi ) (11)

Here, the maximum value can be achieved by traversing all the possible POVM oper-
ators.

2.4.2 Discriminate states using least square measure

Belavkin [39], Holevo [40], and Eldar and Forney [41] proposed the least square mea-
surement (LSM) from the perspective of multivariate quantum statistical hypothesis
testing. The construction of LSM is simple and can be obtained directly according to
the quantum states to be measured. Moreover, the probability of successfully discrim-
inating states by LSM is nearly optimal when the quantum states to be distinguished
are nearly orthogonal [40,42].

For the pure states {|ϕi 〉 , ηi }di=1 with prior probability ηi , the LSM is given as
follows.

∣
∣
∣ f lsmi

〉

= √
ηi

(
∑

i

ηi

)−1/2

|ϕi 〉 , i = 1, 2, . . . , d (12)

For the mixed states {ρi , ηi }di=1 with prior probability, the LSM is given as

M lsm
i = ηiρ

−1/2
out ρiρ

−1/2
out , i = 1, 2, . . . , d (13)

Here, ρout = ∑

i ηiρi .

3 The proposed coherence-based quantum steganalysis algorithm

Let us suppose that there exists a monitor Charlie when Alice and Bob are communi-
cating with each other through public quantum channel. Charlie’s responsibility is to
detect the existence of hidden channel and prevent the transmission of secretmessages.
In this case, the communication process between Alice and Bob is shown in Fig. 1.

If Charlie suspects that secret messages are embedded in open quantum channel, he
can intercept and use appropriate measurement operators to measure the states trans-
ferred between Alice and Bob with probabilities. By discriminating the transmitted
quantum states, he is likely to detect the existence of covert communication. There-
fore, the probability that Charlie can correctly discriminate the transmitted quantum
states is crucial for the quantum steganalysis. The brief flowchart of detecting covert
communication is shown in Fig. 2.
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Fig. 1 The architecture of quantum steganography–steganalysis system

Fig. 2 The flowchart of the coherence-based quantum steganalysis

Firstly, according to the distribution {ρi , ηi }di=1 that Charlie holds, a mathematical
matrix ρQ can be constructed when public quantum channel is transmitting pure quan-
tum states, i.e., the transmitted quantum states can be expressed as ρi = |ϕi 〉 〈ϕi |. And
then, a collection of states that could be discriminated with equal probability is con-
structed based on ρQ , which are named as equivalent discrimination states and denoted
as {|φi 〉 , ηi }di=1. Accordingly, the discrimination issue of {|ϕi 〉 , ηi }di=1 is transformed
into the discrimination of {|φi 〉 , ηi }di=1. The geometric coherence and 1/2-affinity
coherence of ρQ are closely related to the probability of discriminating {|φi 〉 , ηi }di=1.
Therefore, geometric coherence and 1/2-affinity coherence of ρQ act as essential
indexes in quantum steganalysis. Since that there exists no analytic expression of geo-
metric coherence, and geometric coherence is also hard to calculate in some cases,
1/2-affinity coherence is calculated instead of geometric coherence. Finally, Charlie
measures the quantum states in public channel with a certain probability and realizes
effective detection on covert communication by analyzing the difference between the
detected distribution with theoretical distribution.

According to Fig. 2, the specific steps of the coherence-based quantum steganalysis
protocol are given as follows.

Step 1: Constructing the density matrix ρQ
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Amathematical densitymatrix ρQ = ∑

i, j
√

ηiη j
〈

ϕi |ϕ j
〉 |i〉 〈 j | can be constructed

based on the distribution of quantum channels {|ϕi 〉 , ηi }di=1, which is denoted as

ρQ =

⎛

⎜
⎜
⎜
⎝

η1
√

η1η2 〈ϕ1|ϕ2〉 · · · √
η1ηd 〈ϕ1|ϕd〉√

η2η1 〈ϕ2|ϕ1〉 η2 · · · √
η2ηd 〈ϕ2|ϕd〉

...
...

. . .
...√

ηdη1 〈ϕd |ϕ1〉 √
ηdη2 〈ϕd |ϕ2〉 · · · ηd

⎞

⎟
⎟
⎟
⎠

(14)

Step 2: Constructing the equivalent discrimination states {|φi 〉 , ηi }di=1
According to the ρQ constructed in the previous step, a new ensemble {|φi 〉 , ηi }di=1

can be constructed, which are the equivalent discrimination states of {|ϕi 〉 , ηi }di=1.
They are denoted as follows.

|φi 〉 =
√

ρQ

√
ηi

|i〉 (15)

It is easy to deduce that
〈

ϕi |ϕ j
〉 = 〈

φi |φ j
〉

.
The discrimination issue of {|ϕi 〉 , ηi }di=1 is equivalent to the discrimination

of {|φi 〉 , ηi }di=1 according to the conclusion [38] that Poptv.N
S

({|ϕi 〉 , ηi }di=1

) =
Poptv.N
S

({|φi 〉 , ηi }di=1

)

and P lsm
S

({|ϕi 〉 , ηi }di=1

) = P lsm
S

({|φi 〉 , ηi }di=1

)

. Therefore,
{|ϕi 〉 , ηi }di=1 and {|φi 〉 , ηi }di=1 are called as equivalent discrimination states.

Step 3: Calculating the geometric coherence of ρQ

The geometric coherence of ρQ is equal to the error probability of discriminating
{|ϕi 〉 , ηi }di=1 under the optimal von Neumann measurement.

Poptv.N
E

(

{|ϕi 〉 , ηi }di=1

)

= Cg

(

ρQ
)

(16)

Equation (16) is reasonable due to the conclusion that geometric coherence of ρQ

is equal to the error probability of discriminating {|φi 〉 , ηi }di=1

(

|φi 〉 =
√

ρQ√
ηi

|i〉
)

by

the optimal von Neumann measurement [43].

Cg

(

ρQ
)

= Poptv.N
E

(

{|φi 〉 , ηi }di=1

)

≥ Popt
E

(

{|φi 〉 , ηi }di=1

)

(17)

The optimal value can be obtained for von Neumann measurement when {|φi 〉}di=1
are linearly independent. Hence the geometric coherence of ρQ is exactly equal to
the minimum error probability on the premise that {|φi 〉}di=1 are linearly independent.
Equation (16) is reasonable because of Eq. (17) and the fact that {|φi 〉 , ηi }di=1 and
{|ϕi 〉 , ηi }di=1 are equivalent discrimination states.

Step 4: Calculating the 1/2-affinity coherence of ρQ

1/2-affinity coherence is a suboptimal choice since geometric coherence has no
analytic formula yet.A similar conclusion canbederived that the 1/2-affinity coherence
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of ρQ equals to the error probability of discriminating {|ϕi 〉 , ηi }di=1 with LSM.

C1/2
a

(

ρQ
)

= P lsm
E

(

{|ϕi 〉 , ηi }di=1

)

(18)

The proof of Eq. (18) is as follows. Since ρQ = ∑

i ηi |φi 〉 〈φi |, the correspond-
ing least square measurement is M lsm

i = ηi
(

ρQ
)−1/2 |φi 〉 〈φi |

(

ρQ
)−1/2 = |i〉 〈i |.

According to Eq. (11), the probability of successfully discriminating {|φi 〉 , ηi }di=1
with LSM is given by Eq. (19).

P lsm
S

(

{|φi 〉 , ηi }di=1

)

=
∑

i

ηi tr
(

M lsm
i |φi 〉 〈φi |

)

=
∑

i

ηi 〈φi |i〉 〈i |φi 〉

=
∑

i

〈i |
√

ρQ |i〉
2

(19)

P lsm
E

(

{|φi 〉 , ηi }di=1

)

= 1 −
∑

i

〈i |
√

ρQ |i〉
2

(20)

Equation (20) happens to be the same as the expression of α-affinity coherence in
Eq. (10) when α = 1/2. In order to maintain a unified mathematical form and physical
interpretation of geometric coherence, Eq. (20) can be rewritten as Eq. (21).

C1/2
a

(

ρQ
)

= P lsm
E

(

{|φi 〉 , ηi }di=1

)

(21)

Equation (18) is reasonable because of Eq. (21) and the result that {|φi 〉 , ηi }di=1
and {|ϕi 〉 , ηi }di=1 are equivalent discrimination states. Besides, 1/2-affinity is an upper
bound for geometric coherence, according to Eq. (9), and 1/2-affinity can be used
when geometric coherence is too complex to be calculated.

Step 5: Detecting covert communication
Charlie detects public quantum channel and measures the qubits with a certain

probability k. Detection rate k is closely related to communication efficiency. The
existence of covert communication can be detected by utilizing relative entropy to
measure the difference between the detected distribution p (x) and the theoretical
distribution q (x). During the quantum steganalysis procedure, a threshold ξ needs to
be set. If the difference exceeds the threshold ξ ,

KL (p (x) ||q (x)) =
∑

x

p (x) log
p (x)

q (x)
≥ ξ (22)

Charlie believes in the existence of covert communication and suppresses the trans-
mission. Otherwise, Charlie resends the measured particles to Bob directly.

123



  362 Page 10 of 19 Z. Qu et al.

In order to illustrate the steps of the newprotocolmore clearly, the following content
makes a detailed steganalysis to the quantum steganography protocol [11] based on
BB84 [12] proposed by Martin.

4 Steganalysis of BB84-based quantum steganography protocol

Martin proposed a quantum steganography protocol based on the QKD-BB84 pro-
tocol. Let the qubits transmitted are |0〉 , |1〉 , |+〉 and |−〉 with the prior probability
ηi (i = 1, 2, 3, 4). ρQ can be calculated according to Eq. (14).

ρQ =

⎛

⎜
⎜
⎝

η1 0
√

η1η3/2
√

η1η4/2
0 η2

√
η2η3/2 −√

η2η4/2√
η3η1/2

√
η3η2/2 η3 0√

η4η1/2 −√
η4η2/2 0 η4

⎞

⎟
⎟
⎠

When the public channel has no secret message for transmission, i.e., η1 = η2 =
η3 = η4 = 1

4 . According to Eq. (15), the equivalent discrimination states are denoted
as follows:

|φ1〉 =

⎛

⎜
⎜
⎝

1√
2
0
1
2
1
2

⎞

⎟
⎟
⎠

|φ2〉 =

⎛

⎜
⎜
⎝

0
1√
2
1
2− 1
2

⎞

⎟
⎟
⎠

|φ3〉 =

⎛

⎜
⎜
⎝

1
2
1
2
1√
2
0

⎞

⎟
⎟
⎠

|φ4〉 =

⎛

⎜
⎜
⎝

1
2− 1
2
0
1√
2

⎞

⎟
⎟
⎠

C1/2
a

(

ρQ
) = 0.5 can be calculated by Eq. (10), and Cg

(

ρQ
) = 0.5 can also be

figured out by using numerical methods according to the definition. Based on these
two kinds of coherence, the error rate of discriminating transmitted quantum states
by Charlie is nearly 0.5. It shows that geometric coherence and 1/2-affinity coherence
have little difference when there does not exist covert communication in this quantum
steganography protocol.

In the quantum steganography protocol, the embedding rate (E) is defined as the
ratio between the bit number of secret messages and the total number of carrier bits,
denoted by Eq. (23).

Embedding rate (E) = The bit number of secret message

The total number of carrier bits
(23)

The number of carrier bits is 4n in the BB84-based quantum steganography pro-
tocol, but the actual length of the distributed key is n. Therefore, n is used for the
number of carrier bits when calculating E in this paper. The steganography capacity
of the original protocol is only one bit. The protocol needs to be repeated multiple
times if secret messages to be transmitted are more than one bit.

The quantum steganography protocol can hide classical message ‘0’ or ‘1.’ It might
as well assume the embedded secret messages are ‘0.’ Therefore, the quantum chan-
nel is {|ϕi 〉 , ηi }4i=1, here |ϕi 〉 = {|0〉 , |1〉 , |+〉 , |−〉} and ηi = { n−nE

4n + nE
2n , n−nE

4n ,
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Fig. 3 The variation of geometric coherence and its upper and lower bounds at different E

n−nE
4n + nE

2n , n−nE
4n

} = {(1 + E) /4, (1 − E) /4, (1 + E) /4, (1 − E) /4}. The distri-
bution of ‘0’ and ‘1’ turns to be {(1 + E) /2, (1 − E) /2}.

Charliewas able to discriminate quantum stateswith probability 1−C and guess the
true value with probability 1/2 when he fails to discriminate. The existence of covert
communication can be detected according to the difference between measurement
results with the uniform distribution. Thus, the relationship between coherence and
embedding rate is discussed in the following.

The upper and lower bounds of geometric coherence are 1/2-affinity coherence and
affinity coherence, respectively, according to Eqs. (8) and (9). For different embedding
rate E , the variation of geometric coherence and its upper and lower bounds are shown
in Fig. 3.

It can be concluded from Fig. 3 that geometric coherence and 1/2-affinity coher-
ence decrease with the increasing of embedding rate, which means the probability of
measuring and successfully recognizing the quantum state will also increase corre-
spondingly. The geometric coherence changes slightlywhen the embedding rate is low,
but decreases dramatically as the embedding rate increases. The difference between
1/2-affinity coherence and geometric coherence is small, while the difference between
affinity coherence and geometric coherence is vast. Therefore 1/2-affinity coherence
is a substitute for geometric coherence when it is challenging to calculate geometric
coherence.

It can be found fromTable 1 that, if the embedding rate E is less than 0.1, the change
of geometric coherence and 1/2-affinity coherence will be no more than 4e − 3. In
this case, quantum states are hard to discriminated and the covert communication is
very complicated to be detected for the monitor Charlie. Besides, with the increase of
embedding rate, the change of these two kinds of coherence will be significant enough
for quantum state discrimination, which is crucial to quantum steganalysis.
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Table 1 The values of two
coherences at different E values

E 0.05 0.1 0.2 0.3 0.4

Cg 0.4987 0.4949 0.4783 0.4452 0.4024

C1/2
a 0.4995 0.4978 0.4911 0.4798 0.4630

The coherence of the quantum channel without covert communication is 0.5, i.e.,
C0 = 0.5. The theoretical case of distribution q (x) is a uniform distribution. Let us
assume that Charlie selects appropriate measurement operators to measure the states
with a certain probability, and the detected distribution is p (x). Charlie can judge the
existence of covert communication according to the difference between measurement
result with the uniform distribution. According to the previous discussion, a steganaly-
sis threshold ξ ought to be set during quantum steganalysis. If K L (p (x) ||q (x)) ≥ ξ

, Charlie believes that the channel does exist covert communication and suppresses
the transmission. Otherwise, he can resend the measured particles to Bob directly.

5 Performance analysis

5.1 Two essential indicators of quantum steganalysis

Steganographic detection rate and false alarm rate are introduced as two significant
performance evaluation indexes of steganalysis. The definitions of steganographic
detection rate and false alarm rate are denoted as follows.

Steganographic detection rate (SDR) is the probability of a hidden channel being
correctly warned, and it can be denoted by Eq. (24).

SDR = P
(

KL
(

p′ (x) ||q (x)
) ≥ ξ

)

(24)

False alarm rate (FAR) is the probability that a public quantum channel without
hidden channel is incorrectly alarmed, and it can be denoted by Eq. (25).

FAR = P
(

KL
(

q ′ (x) ||q (x)
) ≥ ξ

)

(25)

Here, q (x) is the theoretical distribution, and p′ (x) represents the detected distribu-
tion of covert communication. Charlie’s measurements q ′ (x) may differ significantly
from the theoretical distribution, although there exists no covert communication in the
quantum channel.

SDR and FAR can be used to evaluate the performance of quantum steganalysis
protocol. In general, for an ideal quantum steganalysis protocol, it should have a high
SDR and low FAR. Nevertheless, SDR and FAR are contradictory, which means it
is hard for quantum steganalysis protocols to achieve high SDR and low FAR at the
same time. If ξ is enlarged, both SDR and FAR will be reduced. Therefore, a suitable
value ξ ought to be selected to make a balance.

For theBB84-based quantum steganography protocolwhose carriers are pure states,
suppose there exist M rounds of QKD transmission between Alice and Bob, and the
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monitor Charlie measures N qubits in all. Charlie can discriminate the transmitted
states with probability 1 − C and guess the true value with probability 1/2 when
he fails to discriminate. So that the distribution of ‘0’ and ‘1’ detected by Charlie
is

{ 1
2 + 1

2 E (1 − C) , 1
2 − 1

2 E (1 − C)
}

in theory. Here, C represents the geometric
coherence or 1/2-affinity coherence of ρQ , which depends on which kind of measure-
ment is used.

The calculation of SDR and FAR of the quantum steganography proposed by
Martin has the equivalent forms as:

SDR = 1 − P
(

C0 − ξ ′ <
x

N
< C0 + ξ ′)

= 1 −
∑

C0−ξ ′< x
N <C0+ξ ′

(

N
x

)

ax (1 − a)N−x (26)

and

FAR = 1 − P
(

C0 − ξ ′ <
y

N
< C0 + ξ ′)

= 1 −
∑

C0−ξ ′< y
N <C0+ξ ′

(

N
y

)

C0
y (1 − C0)

N−y (27)

Here, a = 1
2 + 1

2 E (1 − C), C0 is the coherence of the ρQ corresponding to the

public quantum channel without covert communication, and

(

N
i

)

= N !
i !(N−i)! . It can

be drawn from the previous calculation that C0 = Cg
(

ρQ
) = C1/2

a
(

ρQ
) = 0.5.

SDR and FAR are determined by the initial value and variation of coherence and
influenced by the detection number N and the threshold ξ . Coherence and embedding
rate are negatively correlated. Therefore, the embedding rate is also a fundamental
parameter that affects SDR and FAR.

If N or E is enlarged, SDR will increase, while FAR will decrease. If Charlie
increases the value of ξ , both SDR and FAR will be lessened. When Charlie sus-
pects that illegal covert communication is underway between Alice and Bob, he could
artificially alter the value of threshold ξ to meet different safety requirements. For
example, let the embedding rate is 0.2 and N is 300, if ξ = 0.3 × 10−2, then SDR is
0.7653 and FAR is 0.2995; if ξ = 0.4×10−2, then SDR is 0.6869 and FAR is 0.2047;
if ξ = 0.5 × 10−2, then SDR and FAR would be reduced to 0.6443 and 0.1665,
respectively.

In the remainder of this section, the SDR and FAR of the quantum steganography
protocol proposed by Martin are calculated, and the parameter ξ is determined by the
optimization algorithm with the goal of

min
ξ

−SDR + FAR

Charlie can adjust this optimization function if he stresses more about SDR (or FAR).
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Fig. 4 The variation of geometric coherence-based SDR at different N

The variation of SDR concerning N under different embedding rate E is shown in
Fig. 4. Some fluctuations in the curve are due to insufficient detection number N and
the optimization algorithm, but we can see the trend that SDR rises with the increase
of N and E .

In the optimal threshold ξ , some FAR and SDR values based on two kinds of
coherence are figured out and shown in Table 2.

The optimal threshold ξ increases with the increase of E and decreases with the
increase of N . In the same detection number, SDR is positively associated with the
embedding rate, and FAR is negatively correlated with E . Besides, when the embed-
ding rate is constant, the higher N is, the higher SDR and lower FARwill be achieved.
Charlie can improve the performance of the quantum steganalysis protocol by increas-
ing the value of N .

It is worth noting that SDR will be very low, no matter how many numbers that
Charlie detects if the embedding rate is minimal. In this case, it is difficult to detect
the existence of covert communication. Except for this particular case, the proposed
protocol can detect covert communication efficiently and accurately, as long as the
embedding rate reaches a certain level.

The results shown in Table 2 can also verify the conclusion that quantum ste-
ganalysis has better performance with geometric coherence. For simple cases, we can
calculate geometric coherence, while we have to use the sub-optimal choice of 1/2-
affinity coherence for some complex cases. Besides, if Charlie does not choose the
optimal measurement, the SDR will be slightly reduced.

According to the above analysis, when the steganalysis protocol reaches a specific
embedding rate, it has a higher SDR and a lower FAR after certain number of detection.
In summary, the performance evaluation result indicates that the proposed quantum
steganalysis protocol has a satisfactory performance.
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Table 2 FAR and SDR values under optimal ξ

E N Geometric coherence 1/2-affinity coherence

SDR FAR ξ
(

×10−2
)

SDR FAR ξ
(

×10−2
)

0.1 200 0.4027 0.2888 0.39 0.4015 0.2888 0.39

300 0.4336 0.2726 0.29 0.4350 0.2726 0.31

400 0.5041 0.2937 0.18 0.5020 0.2937 0.18

500 0.5171 0.2635 0.17 0.5147 0.2635 0.18

0.2 200 0.6129 0.2292 0.49 0.5991 0.2292 0.56

300 0.6865 0.1841 0.43 0.7118 0.2253 0.38

400 0.7712 0.1769 0.34 0.7552 0.1769 0.30

500 0.8059 0.1399 0.30 0.7896 0.1399 0.30

0.3 200 0.8112 0.1374 0.75 0.7684 0.1374 0.77

300 0.8896 0.0949 0.65 0.8766 0.1189 0.59

400 0.9328 0.0642 0.64 0.9172 0.0800 0.56

500 0.9581 0.0441 0.56 0.9434 0.0544 0.53

0.4 200 0.9342 0.0560 1.31 0.9028 0.0768 1.09

300 0.9734 0.0242 1.18 0.9585 0.0431 1.02

400 0.9887 0.0107 1.17 0.9763 0.0187 0.97

500 0.9951 0.0048 1.11 0.9892 0.0107 0.91

5.2 The steganalysis influence on the normal QKD efficiency

In the process of quantum steganalysis, it is difficult to avoid interference with the
normal QKD efficiency, constrained by quantum uncertainty theorem and quantum
non-clonability theorem. However, monitor Charlie not only aims to achieve a good
steganalysis performance, but also hopes to reduce the interference. Hence, the ste-
ganalysis influence on the normal QKD efficiency and the selection of detection rate
k are discussed in this section.

Charlie measures N qubits during the quantum steganalysis process in all. Suppose
Charlie does a randomdetectionwith probability k, i.e., k = N

nM . Based on the previous
discussion, Charlie was able to discriminate quantum states with success rate 1 − C ,
and guess the true value with probability 1/2 when he fails to discriminate. Here, C
represents the geometric coherence or 1/2-affinity coherence of ρQ . Therefore, this
quantum steganalysis process will result in a percentage of errors equal to kC/2.

When Charlie suspects that a covert communication is taking place in public quan-
tum channel, he can increase the detection rate k. A large k helps Charlie to confirm
the existence of secret messages more quickly with the cost of sacrificing efficiency.
In order to reduce the influence of quantum steganalysis on QKD efficiency, Charlie
ought to choose a value of k that satisfies

kC

2
+

3
√

2n
( kC

2

) (

1 − kC
2

)

2n
< t
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0 < k <
4nt + 9 − 3

√−8nt2 + 8nt + 9

(2n + 9)C
(28)

So that the probability of causing an error rate over the maximum error t allowed by
Alice and Bob is minuscule (t ≤ 1/4), and the detection procedure by Charlie has
little impact on the QKD efficiency. This inequality utilizes the normal approximation
to a binomial distribution.

Suppose t = 0.25 and C = 0.5, when n = 100, the value of k should be no more
than 0.68; when n = 200, k should be less than 0.76. Suppose t = 0.20 and C = 0.5,
when n = 100, k should be less than 0.51; when n = 200, the maximum value of
k is 0.585. Charlie can also dynamically select the detection rate k. When k is large
occasionally, whichwould introduce a high error rate over t , Alice andBobwill simply
abort the protocol.

In addition, sampling detection is simpler strategy which can also reduce the inter-
ference on QKD efficiency. Under this strategy, only a few transmissions will be
affected. Charlie can detect all states in one QKD transmission to achieve sufficient
detection number, so as to realize effective detection on covert communication. This
operation will result in an error exceeding the threshold t , which may be ascribed by
Alice and Bob to excessive noise or the presence of some kind of eavesdropping. Alice
and Bob can abort this transmission and start another run of QKD.

To sum up, the proposed quantum steganalysis protocol does interfere with the
normal QKD efficiency to some extent. Nevertheless, by adjusting the detection rate k
or adopting sampling detection strategy, it can effectively reduce the impact on QKD
efficiency.

6 Discussions and conclusions

A novel quantum steganalysis protocol targeting pure states is proposed in this paper,
which integrates the crucial fact that classical steganography is prone to change the
probability distribution of the carrier, and the physical properties that the unknown
quantum state discrimination process is sensitive to the distribution. The geometric
coherence and affinity coherence are accurately calculated to quantify the probabil-
ity that the transmitted quantum states can be correctly discriminated. Then effective
detection on covert communication can be realized by analyzing the distribution differ-
ences after the discrimination. The quantum steganography protocol given by Martin
is detailly analyzed in this paper. It is found that, except for the case that the embedding
rate is very limited, the performance of the proposed quantum steganalysis protocol
will improve dramatically with the increase of embedding rate. Besides, by adjust-
ing the detection rate or adopting sampling detection strategy, the impact on QKD
efficiency can be reduced.

The proposed coherence-based quantum steganalysis protocol can not only prevent
illegal covert communication, but also serve as a standard for evaluating quantum
steganography. The results shown in Tables 1 and 2 can also provide a reference for
the design and application of quantum steganography protocol proposed by Martin,
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and the selection of different embedding rate canmeet diverse levels of imperceptibility
requirements.
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